Stars are easy to see. They emit light. Planets – in our own Solar System, anyway – are easy to see, because they move slowly and are reflected by our own Sun’s light. But what about all that other debris hurtling through space? The stuff that created craters on the moon and the Earth alike? They don’t emit their own light and passing at incredible speeds, may not be noticed until it is too late.
Fortunately, however, they do emit infrared light. And they do so at a wavelength that is uncommon enough in interstellar space that a properly-trained camera sensor might just be able to spot them from considerably farther away, where they might still have their courses altered to less devastating trajectories. That is the aim of University of Rochester boffins William J. Forrest, Judith Pipher and Craig McMurtry. And their sensor has just passed a critical test to move on to the next phase of development:
Craig McMurtry, the paper’s lead author, is also a member of the Rochester team. “We were delighted to see in this generation of detectors a factor of 1000 improvement in sensitivity compared with previous generations, while simultaneously raising the operating temperature to one readily attainable in space,” he says.