Categories
Biology Science Zoology

Of sex, food and worms: good science, badly reported

Ok. Here we go again. Another giggle-inducing concept in science, latched onto by a media in desperate search of an original story. So, what’s the real story?

It is true: there is a newly-discovered set of neurons found in a type of worm that, when activated, causes the male of the species to forego food in search of sex. That this set of neurons was just discovered actually does matter to the lives of humans. Or at least, it could. But not because it confirms the cliche of men starving for sex:

Researchers may have figured out why men can prioritize sex over food. Well, some men.

It’s a matter of two “mystery” neurons, suggest researchers at University College London.

They found that these extra neurons — which are unique to males — allow them to remember and seek sex even at the expense of food and are also behind some sex-based differences in learning.

So, what happened?

C. elegans is a species of worm about which we know a surprising amount. In biology research, there are some species of plants and animals that, for one reason or another, get more attention than others. Elodia and Drosophila (fruit flies) are very common study species.

C. elegans is popular because it is a simple organism that happens to share a lot of common traits with more advanced forms of life like humans. By studying C. elegans, we can often make intelligent extrapolations about how things work in other species.

In particular, C. elegans has the distinction of being the only species of life for which we have a complete neuronal map. Every neuron, every synapse (connections between neurons), every feature of the neural network of the C. elegans has been long-since mapped and analyzed… at least, so we thought.

Two researchers at the University College of London, wife and husband team Dr. Arantza Barrios and Dr. Richard Poole, research the sexual dimorphism of C. elegans. Sexual dimorphism means that different sexes have different traits (think boobs. I know I do).

In the past, the dimorphism of C. elegans has always been studied in a different portion of the worm, where differences are more obvious: the tail. These researchers discovered one set of sexually-dimorphous neurons in the head of the animals, which they named the Mystery Neurons of the Male (MNM).

What they do turns out not to be much of a mystery at all: they learn to recognize the opposite sex as a priority stimulus. Don’t we all? When the opposite sex is near – which turn out to be hermophrodites, in the C. elegens’ case – the worm with active MNM will ignore other homeostatic functions – like eating – in favour of pursuing sexual reproduction.

So. There you have it: males of the C. elegens species will forego eating in favour of sex. Or at least, they will favour sexual reproduction over other things. Not quite the whiz-bang you were hoping for? Of course not, because non-science – and even some science – news sources want to focus on sex, sex, sex. Yet the reality of what the boffins in London discovered is way more important and honestly cooler.

Why it matters

Worms getting it on don’t seem terribly relevant to humans. And indeed, they are not. What really matters is, again, the fact that simple organisms like the C. elegens can give us clues to our own biology. In this case, science has been looking for the keys to understanding sexual dimorphism in human cognition. We know that some decision making in humans is consistently different from one sex to the other. While much of the scientific community has been certain that such a difference also existed in the brain’s wiring, science has thus far not been able to pin that difference down.

That a simple creature so far removed from us in the evolutionary tree should have such a simple device for continuing the species may indicate that a similar development across species. Or, it may not. It’s just way too early to tell.

The other, perhaps even more significant, discovery that this new development represents is the appearance of glial cells in such a simple organism. Here in Rochester, we know all about glial cells, because that’s what our neuroscientists specialize in.

Glial cells are, effectively, stem cells for the brain. They are part of the glimphatic system, and their job is to grow more neuronal  cells when old ones wear out or are damaged. Remember Nancy Reagan in the 80’s? Insisting that you could not grow brain cells back, so don’t do drugs? Well, the old bat was wrong. Do drugs: your glial cells will make more neurons, no sweat.

It’s is significant that glia create entirely new neuronal cells at different age stages, at least in the case of C. elegans. Rather than simply creating the same type of cell over and over again, it seems like glia (individual glial cells) can alter their behavior throughout the lifetime of an individual. It means glia are a lot more flexible than we knew, which may point the way towards therapies for neurodegenerative disease like Parkinson’s or Alzheimer’s.


So, maybe not the sexy news you were hoping for. If you’d been planning on filling out your 6pm news cast or your morning radio talk show? Sorry. But understanding the fundaments of human cognition and finding cures for wasting brain disease seems kind of important. But these messages got lost, because pee-pees and hoo-hahs. Maybe, if the media industry at large could stop giggling and take this more seriously, we could appreciate this amazing discovery for what it is.

But for now, dear reader, it’s just you and us.

By Tommy Belknap

Owner, developer, editor of DragonFlyEye.Net, Tom Belknap is also a freelance journalist for The 585 lifestyle magazine. He lives in the Rochester area with his wife and son.