Tag Archives: exoplanetology

This Week in Space: Warp Speed, Mr. Sulu

In case you’ve decided that this world no longer holds any charms for you, good news! This week’s space updates include a lot of promising research into getting you off this rock. Space ahead!

Things that go BOOM!

NASA’s Heliophysics program – which monitors the sun, get it? “Helio?” – has an amazing compilation of videos of what they call a “prominence,” or a blast of solar radiation. The videos compile several different distances, bands of energy and even two completely different sides of the same explosion.

Meanwhile, we have also recorded and are studying the largest star explosion ever recorded.

Come to the Off-World Colonies

The first and most basic problem we have as a species in visiting other worlds. Sure, provided that we stay within our own solar system, travel is not that far. Visiting any of Jupiter’s moons, for example. But if we’re to really break the bonds of our home system, it requires light speed travel.

New research puts light speed travel within at least hypothetical reach, though. Close enough in reach, in fact, that NASA actually has some basic testing in the works. The concept put forth decades ago as a “warp bubble,” which compresses space time ahead of it while expanding space-time behind it, might be possible for both sub- and superluminal (slower and faster than the speed of light, respectively) travel.

Now for the bad news: the nearest star and potentially-inhabitable exoplanet to the Earth is Alpha Centauri Bb at a whopping 4.25 lightyears away. So at light speed, assuming it can be achieved, we’re still looking at 51 months of crappy spaceline food and kids kicking the backs of our seats before we get to our destination.

As for our next stop, humanity’s original spacefarers have ideas of their own. Buzz Aldrin was quoted this week as saying that humanity’s future lies on the surface of Mars

Buzz Aldrin: Humanity’s Future Is on Mars:

Aldrin’s plan calls for NASA and the United States to focus technology development efforts for a manned Mars mission while still remaining a global leader in human spaceflight. The plan does not completely forgo a return of astronauts to the moon, but does state that NASA should not send astronauts there. Instead, his plan states, other countries like China, India and Russia can focus on exploration of the lunar surface while NASA fine-tunes the tech needed for Mars trips from stable Lagrange points near the moon.

Meanwhile, as the debate continues about the feasibility of travel both in and out of the Solar System, others continue to explore exoplanets in ways both innovative and old-school. One method for understanding the makeup of expolanets is to borrow slightly from the world of star analysis and use spectometry to see the signatures of elements. In this case, rather than putting the light of stars through a prism to determine the elements being burned off, the light of the stars as it passes through exoplanets as the occlude our view of the star is being analyzed for the same data about the possible atmospheres and planetary make up of our new long-distance BFFs.

Odds and Ends

If you’re looking for a way to contribute to deeper space exploration, why not try NASA’s call to search for “Space Warp” galaxies? No, these are not galaxies traveling at the speed of light. These are galaxies who by their nature create telephoto lenses into even deeper space. NASA hopes to be able to use these galaxies to peer deeper than ever before into the cosmos, and with much greater detail.

And finally, it turns out that the Milky Way’s own resident black hole has a surprising taste for gasses. Whereas scientists expected to find the crushed remnants of stars at the center of our galaxy – being dragged inevitably towards the deadly embrace of a super-massive black hole that keeps time in the Milky Way – they have instead discovered a collection of gasses equivalent to the size of our own Earth about to be gobbled up within the year.

That’s it for this week, space fans!

NASA is discovering the relationship between asteroid belts and planets

Our solar system includes our sun at the center; four rocky planets surrounding that; an asteroid belt; four gas giants; the icy Kuiper Belt of still more rock and snow. The appearance of two similar belts of debris, one warmer and one colder, happens in at least two very near-by star systems as well. Vega and Fomalhaut, both a relatively-neighborly 25 light-years away from us. New insights into these systems, aided by observations from the Spitzer Space Telescope and Herschel Space Observatory are leaving scientists with the impression that there must also be planets around those systems. In fact, the existence of the belts may actually depend on the existence of the planets.

When star systems form, they begin with clouds of dust. Once enough of the dust has been compacted into the center of the cloud by gravity, the sudden and rapid fusion of hydrogen atoms creates a huge nuclear furnace: the star is born. The rest of the dust begins to accrete into larger and larger rocks. Dust becomes asteroid. Asteroid becomes planetesimal. And if they eat their peas and clean their rooms, planetesimals become planets. All of this happens because gravity requires them to cling together.

But the heat of the sun also plays a role. Closer to our sun, large masses of gas were not allowed to form around planets, and thus the inner most orbits are rocky. Outer worlds become gas giants like Jupiter and Neptune, playing interplanetary Dust Buster to the surrounding material. What material stretched between these two temperature zones – and everything outside the gas giants’ reach – became asteroid belts.

That similar conditions exist within these other nearby star systems suggests strongly to scientists in both NASA and the ESA (European Space Agency, whose project the Herschel SO largely is) that similar planets must also exist. What is even more compelling about the evidence is that, while the parent stars Vega and Fomalhaut are both double the size of our sun:

The gap between the inner and outer debris belts for Vega and Fomalhaut also proportionally corresponds to the distance between our sun’s asteroid and Kuiper belts. This distance works out to a ratio of about 1:10, with the outer belt 10 times farther from its host star than the inner belt.

While much of the research into extra-Solar planets has been done by observing the wobbling movement of the parent star or observing the blink of transiting planets (see this kinda weird vid for a good explainer), more new technology is on the way in the form of the James Webb Space Telescope, among other projects. How many planets will we find? How many moons?